Proof

$$\frac{d}{dx}\left(\frac{x^{n+1}}{n+1} + C\right) = \frac{(n+1)x^{n+1-1}}{n+1}$$
= x^n

EXAMPLES

1. The gradient of a curve is given by $\frac{dy}{dx} = 6x^2 + 8x$. If the curve passes through the point (1, -3), find the equation of the curve.

Solution

$$\frac{dy}{dx} = 6x^2 + 8x$$

$$y = 6\left(\frac{x^3}{3}\right) + 8\left(\frac{x^2}{2}\right) + C$$

$$\therefore y = 2x^3 + 4x^2 + C$$

The curve passes through (1, -3)

$$\therefore -3 = 2(1)^3 + 4(1)^2 + C$$

$$= 2 + 4 + C$$

$$-9 = C$$

Equation is $y = 2x^3 + 4x^2 - 9$.

2. If
$$f''(x) = 6x + 2$$
 and $f'(1) = f(-2) = 0$, find $f(3)$.

Solution

$$f''(x) = 6x + 2$$

$$f'(x) = 6\left(\frac{x^2}{2}\right) + 2x + C$$

$$= 3x^2 + 2x + C$$
Now $f'(1) = 0$
So $0 = 3(1)^2 + 2(1) + C$

$$-5 = C$$

$$f'(x) = 3x^2 + 2x - 5$$

$$f(x) = 3\left(\frac{x^3}{3}\right) + 2\left(\frac{x^2}{2}\right) - 5x + C$$

$$= x^3 + x^2 - 5x + C$$

Now
$$f(-2) = 0$$

So
$$0 = (-2)^3 + (-2)^2 - 5(-2) + C$$
$$= -8 + 4 + 10 + C$$
$$-6 = C$$

$$f(x) = x^3 + x^2 - 5x - 6$$

$$f(3) = 3^3 + 3^2 - 5(3) - 6$$
$$= 27 + 9 - 15 - 6$$
$$= 15$$

2.12 Exercises

- 1. Find the primitive function of
 - (a) 2x 3
 - (b) $x^2 + 8x + 1$
 - (c) $x^5 4x^3$
 - (d) $(x-1)^2$
 - (e) 6
- 2. Find f(x) if
 - (a) $f'(x) = 6x^2 x$
 - (b) $f'(x) = x^4 3x^2 + 7$
 - (c) f'(x) = x 2
 - (d) f'(x) = (x+1)(x-3)
 - (e) $f'(x) = x^{\frac{1}{2}}$
- 3. Express y in terms of x if

(a)
$$\frac{dy}{dx} = 5x^4 - 9$$

(b)
$$\frac{dy}{dx} = x^{-4} - 2x^{-2}$$

(c)
$$\frac{dy}{dx} = \frac{x^3}{5} - x^2$$

(d)
$$\frac{dy}{dx} = \frac{2}{x^2}$$

(e)
$$\frac{dy}{dx} = x^3 - \frac{2x}{3} + 1$$

- 4. Find the primitive function of
 - (a) \sqrt{x}
 - (b) χ^{-3}
 - (c) $\frac{1}{v^8}$
 - (d) $x^{-\frac{1}{2}} + 2x^{-\frac{2}{3}}$
 - (e) $x^{-7} 2x^{-2}$
- 5. If $\frac{dy}{dx} = x^3 3x^2 + 5$ and y = 4 when x = 1, find an equation for y in terms of x.
- 6. If f'(x) = 4x 7 and f(2) = 5, find f(x).
- 7. Given $f'(x) = 3x^2 + 4x 2$ and f(-3) = 4, find f(1).
- 8. Given that the gradient of the tangent to a curve is given by $\frac{dy}{dx} = 2 6x$ and the curve passes through (-2, 3), find the equation of the curve.
- 9. If $\frac{dx}{dt} = (t-3)^2$ and x = 7 when t = 0, find x when t = 4.